Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(16): 165001, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702328

RESUMO

Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models. This analysis represents the first test of stopping models under inertial confinement fusion conditions, covering plasma temperatures of k_{B}T≈1-4 keV and particle densities of n≈(12-2)×10^{24} cm^{-3}. Under these conditions, we find significant deviations of our data from a theory employing classical collisions whereas the theory including quantum diffraction agrees with our data.

2.
Rev Sci Instrum ; 89(8): 083510, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30184681

RESUMO

A glass Cherenkov detector, called the Diagnostic for Areal Density (DAD), has been built and implemented at the OMEGA laser facility for measuring fusion gammas above 430 keV, from which remaining shell ⟨ρR⟩ abl can be determined. A proof-of-principle experiment is discussed, where signals from a surrogate gas Cherenkov detector are compared with reported values from the wedge range filter and charged particle spectrometer and found to correlate strongly. The design of the more compact port-based DAD diagnostic and results from the commissioning shots are then presented. Once absolutely calibrated, the DAD will be capable of reporting remaining shell ⟨ρR⟩ abl for plastic and glass capsules within minutes of a shot and with potentially higher precision than existing techniques.

3.
Rev Sci Instrum ; 87(11): 11E732, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910331

RESUMO

The newest generation of Gas Cherenkov Detector (GCD-3) employed in Inertial Confinement Fusion experiments at the Omega Laser Facility has provided improved performance over previous generations. Comparison of reaction histories measured using two different deuterium-tritium fusion products, namely gamma rays using GCD and neutrons using Neutron Temporal Diagnostic (NTD), have provided added credibility to both techniques. GCD-3 is now being brought to the National Ignition Facility (NIF) to supplement the existing Gamma Reaction History (GRH-6m) located 6 m from target chamber center (TCC). Initially it will be located in a reentrant well located 3.9 m from TCC. Data from GCD-3 will inform the design of a heavily-shielded "Super" GCD to be located as close as 20 cm from TCC. It will also provide a test-bed for faster optical detectors, potentially lowering the temporal resolution from the current ∼100 ps state-of-the-art photomultiplier tubes (PMT) to ∼10 ps Pulse Dilation PMT technology currently under development.

4.
Rev Sci Instrum ; 85(11): 11E122, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430301

RESUMO

The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide "burn-averaged" observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%-5% can be achieved in the range of 2-25 MeV γ-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10(14) DT-n for ablator ρR (at 0.2 g/cm(2)); 2 × 10(15) DT-n for total DT yield (at 4.2 × 10(-5) γ/n); and 1 × 10(16) DT-n for fuel ρR (at 1 g/cm(2)).

5.
Rev Sci Instrum ; 85(11): 11E124, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430303

RESUMO

A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

6.
Rev Sci Instrum ; 84(7): 073504, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23902060

RESUMO

The gas Cherenkov detectors at NIF and Omega measure several ICF burn characteristics by detecting multi-MeV nuclear γ emissions from the implosion. Of primary interest are γ bang-time (GBT) and burn width defined as the time between initial laser-plasma interaction and peak in the fusion reaction history and the FWHM of the reaction history respectively. To accurately calculate such parameters the collaboration relies on Monte Carlo codes, such as GEANT4 and ACCEPT, for diagnostic properties that cannot be measured directly. This paper describes a series of experiments performed at the High Intensity γ Source (HIγS) facility at Duke University to validate the geometries and material data used in the Monte Carlo simulations. Results published here show that model-driven parameters such as intensity and temporal response can be used with less than 50% uncertainty for all diagnostics and facilities.

7.
Phys Rev Lett ; 111(5): 052501, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23952390

RESUMO

Neutron time-of-flight spectra from inertial confinement fusion experiments with tritium-filled targets have been measured at the National Ignition Facility. These spectra represent a significant improvement in energy resolution and statistics over previous measurements, and afford the first definitive observation of a peak resulting from sequential decay through the ground state of (5)He at low reaction energies E(c.m.) 100

8.
Rev Sci Instrum ; 83(10): 10D311, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126838

RESUMO

The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve γ-rays in the range of E(o) ± 20% in single shot, where E(o) is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E(o) over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 × 10(14) minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV (12)C γ-rays assuming 200 mg/cm(2) plastic ablator areal density and 3 × 10(15) minimum DT neutrons to measure the 16.75 MeV DT γ-ray line.

9.
Rev Sci Instrum ; 83(10): 10D719, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126893

RESUMO

Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as the Z accelerator at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History diagnostic at the OMEGA laser and at NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

10.
Rev Sci Instrum ; 83(10): 10D905, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126909

RESUMO

The gamma reaction history diagnostic at the National Ignition Facility has the capability to determine a number of important performance metrics for cryogenic deuterium-tritium implosions: the fusion burn width, bang time and yield, as well as the areal density of the compressed ablator. Extracting those values from the measured γ rays of an implosion, requires accounting for a γ-ray background in addition to the impulse response function of the instrument. To address these complications, we have constructed a model of the γ-ray signal, and are developing a simultaneous multi-shot fitting routine to constrain its parameter space.

11.
Rev Sci Instrum ; 83(10): 10D917, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126919

RESUMO

The Radiochemical Analysis of Gaseous Samples (RAGS) diagnostic apparatus was recently installed at the National Ignition Facility (NIF). Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix. Collection efficiency was determined by injecting a known amount of (135)Xe into the NIF chamber, which was then collected with RAGS. Commissioning was performed with an exploding pusher capsule filled with isotopically enriched (124)Xe and (126)Xe added to the DT gas fill. Activated xenon species were recovered post-shot and counted via gamma spectroscopy. Results from the collection and commissioning tests are presented. The performance of RAGS allows us to establish a noble gas collection method for measurement of noble gas species produced via neutron and charged particle reactions in a NIF capsule.

12.
Rev Sci Instrum ; 81(10): 10D318, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033844

RESUMO

We describe the evaluation of a microchannel plate (MCP) photomultiplier tube (PMT), incorporating a 3 µm pore MCP and constant voltage anode and cathode gaps. The use of the small pore size results in PMTs with response functions of the order of 85 ps full-width-half-maximum, while the constant electric field across the anode and cathode gaps produces a uniform response function over the entire operating range of the device. The PMT was characterized on a number of facilities and employed on gas Cherenkov detectors fielded on various deuterium tritium fuel (DT) implosions on the Omega Laser Facility at the University of Rochester. The Cherenkov detectors are part of diagnostic development to measure Gamma ray reaction history for DT implosions on the National Ignition Facility.

13.
Rev Sci Instrum ; 81(10): 10D322, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033846

RESUMO

Absolute bang time measurements with the gas Cherenkov detector (GCD) and gamma reaction history (GRH) diagnostic have been performed to high precision at the OMEGA laser facility at the University of Rochester with bang time values for the two diagnostics agreeing to within 5 ps on average. X-ray timing measurements of laser-target coupling were used to calibrate a facility-generated laser timing fiducial with rms spreads in the measured coupling times of 9 ps for both GCD and GRH. Increased fusion yields at the National Ignition Facility (NIF) will allow for improved measurement precision with the GRH easily exceeding NIF system design requirements.

14.
Rev Sci Instrum ; 81(10): 10D328, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033850

RESUMO

This paper compares the results from a GEANT4 simulation of the gas Cherenkov detector 1 (GCD1) with previous simulations and experimental data from the Omega laser facility. The GCD1 collects gammas emitted during a deuterium-tritium capsule implosion and converts them, through several processes, to Cherenkov light. Photon signals are recorded using subnanosecond photomultiplier tubes, producing burn reaction histories. The GEANT4 GCD1 simulation is first benchmarked against ACCEPT, an integrated tiger series code, with good agreement. The simulation is subsequently compared with data from the Omega laser facility, where experiments have been performed to measure the effects of Hohlraum materials on reaction history signals, in preparation for experiments at the National Ignition Facility.

15.
Rev Sci Instrum ; 81(10): 10D325, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033848

RESUMO

The National Ignition Facility (NIF) successfully completed its first inertial confinement fusion (ICF) campaign in 2009. A neutron time-of-flight (nTOF) system was part of the nuclear diagnostics used in this campaign. The nTOF technique has been used for decades on ICF facilities to infer the ion temperature of hot deuterium (D(2)) and deuterium-tritium (DT) plasmas based on the temporal Doppler broadening of the primary neutron peak. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the yield with high accuracy. The NIF nTOF system is designed to measure neutron yield and ion temperature over 11 orders of magnitude (from 10(8) to 10(19)), neutron bang time in DT implosions between 10(12) and 10(16), and to infer areal density for DT yields above 10(12). During the 2009 campaign, the three most sensitive neutron time-of-flight detectors were installed and used to measure the primary neutron yield and ion temperature from 25 high-convergence implosions using D(2) fuel. The OMEGA yield calibration of these detectors was successfully transferred to the NIF.

16.
Rev Sci Instrum ; 81(10): 10D333, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033853

RESUMO

The gamma reaction history (GRH) diagnostic is a multichannel, time-resolved, energy-thresholded γ-ray spectrometer that provides a high-bandwidth, direct-measurement of fusion reaction history in inertial confinement fusion implosion experiments. 16.75 MeV deuterium+tritium (DT) fusion γ-rays, with a branching ratio of the order of 10(-5)γ/(14 MeV n), are detected to determine fundamental burn parameters, such as nuclear bang time and burn width, critical to achieving ignition at the National Ignition Facility. During the tritium/hydrogen/deuterium ignition tuning campaign, an additional γ-ray line at 19.8 MeV, produced by hydrogen+tritium fusion with a branching ratio of unity, will increase the available γ-ray signal and may allow measurement of reacting fuel composition or ion temperature. Ablator areal density measurements with the GRH are also made possible by detection of 4.43 MeV γ-rays produced by inelastic scatter of DT fusion neutrons on (12)C nuclei in the ablating plastic capsule material.

17.
Rev Sci Instrum ; 81(10): 10E515, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034043

RESUMO

A temporally gated x-ray framing camera based on a proximity focus microchannel plate is one of the most important diagnostic tools of inertial confinement fusion experiments. However, fusion neutrons produced in imploded capsules interact with structures surrounding the camera and produce background to x-ray signals. To understand the mechanisms of this neutron induced background, we tested several gated x-ray cameras in the presence of 14 MeV neutrons produced at the Omega laser facility. Differences between background levels observed with photographic film readout and charge-coupled-device readout have been studied.

18.
Rev Sci Instrum ; 79(10): 10E503, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044489

RESUMO

Understanding mix in inertial confinement fusion (ICF) experiments at the National Ignition Facility requires the diagnosis of charged-particle reactions within an imploded target. Radiochemical diagnostics of these reactions are currently under study by scientists at Los Alamos and Lawrence Livermore National Laboratories. Measurement of these reactions requires assay of activated debris and tracer gases from the target. Presented below is an overview of the prompt radiochemistry diagnostic development efforts, including a discussion of the reactions of interest as well as the progress being made to collect and count activated material.

19.
Rev Sci Instrum ; 79(10): 10E532, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044513

RESUMO

Gas Cherenkov detectors (GCDs) have been used to convert fusion gamma into photons to achieve gamma bang time and reaction history measurements. The GCDs designed for OMEGA used Cassegrain reflector optics in order to fit inside a 10 in. manipulator. A novel design for the National Ignition Facility using 90 degrees off-axis parabolic mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO(2) gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100 mm diameter by 500 mm long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO(2) gas volume. A cluster of four channels will allow for increased dynamic range as well as for different gamma energy threshold sensitivities.

20.
Phys Rev Lett ; 75(18): 3237-3240, 1995 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-10059533
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...